42 research outputs found

    Development of an electro-mechanically controlled hand orthosis for assisting finger extension in stroke survivors

    Get PDF
    Los accidentes cerebro-vasculares son una de las causas más comunes de discapacidad permanente en los Estados Unidos y el mundo. Esta condición causa déficits crónicos, como la hemiparesis, que es especialmente prevalente en las extremidades distales superiores. Se ha desarrollado una órtesis de mano controlada electromecánicamente para determinar el potencial uso terapéutico de este tipo de dispositivos en la rehabilitación funcional de la mano. Un pequeño motor de corriente directa es utilizado como el actuador principal, y un guante operado mecánicamente por el usuario por medio de un cable es el componte central del dispositivo. El control de la órtesis se logra por medio de un sistema automatizado utilizando un sensor de fuerza conectado al cable del guante. Adicionalmente se usa un microcontrolador para generar la señal de ancho de pulso modulada (PWM) y las señales de dirección requeridas para operar el motor, a una velocidad determinada por el ciclo de trabajo de la señal de PWM y en la dirección determinada por el estado de un bit bandera que es modificado por un interruptor que opera el usuario. El diseño es portátil y el dispositivo está listo para pruebas clínicas, ya que mostró un desempeño aceptable en pruebas iniciales con individuos sanos.Stroke is the leading cause of long-term disability in the world. It causes chronic deficits, such as hemiparesis, especially prevalent in the distal upper extremities. An electro-mechanically driven hand orthosis has been developed to assess the potential therapeutic use of such devices in rehabilitating hand function. A small Direct Current (DC) brushed motor is used as the main actuator, and a cable-driven glove connected to the motor shaft is the central component of the device. The orthosis control is achieved through a force feedback loop using a miniature load cell attached in series to the cable and control module. The later, generates Pulse Width Modulated (PWM) and direction signals required to drive the motor. The speed is determined by the duty cycle of the PWM signal while the direction by the status of a flag bit modified by a user-operated switch. A portable design was achieved by using a 6 V battery pack as the power supply. The device is ready for use in clinical trials with stroke survivor subjects as it has already been tested on healthy individuals with satisfactory performance

    Desarrollo de un guante ortótico para proveer asistencia en la extensión de los dedos a pacientes que han sufrido derrame cerebral

    Get PDF
    An externally actuated glove, controlled by a microprocessor, is being developed to assist fi nger extension in stroke survivors. The goal of this device is to allow repeated practice of specifi c tasks for hand therapy in the home environment. The device allows the user three control modes: voice recognition, electromyography or manual. These modes can be used either independently or combined according to the needs of the user. Both position and force feedback are available for control and safety. Initial testing of the prototype has shown promising performance.Se presenta el desarrollo de un guante activado externamente y controlado por un microprocesador para asistir la extensión de los dedos en pacientes con derrame cerebral. La meta del dispositivo es permitir la repetición de tareas específi cas para realizar terapia de la mano en un ambiente casero. El usuario puede controlar el dispositivo por tres medios diferentes: reconocimiento de voz, electromiografía o manualmente. Estos medios pueden ser usados tanto independientemente como en combinación según las necesidades del paciente. Para el control y la seguridad, se tiene retroalimentación de posición y de fuerza. Las pruebas iniciales del prototipo han demostrado un desempeño prometedo

    Review of control strategies for robotic movement training after neurologic injury

    Get PDF
    There is increasing interest in using robotic devices to assist in movement training following neurologic injuries such as stroke and spinal cord injury. This paper reviews control strategies for robotic therapy devices. Several categories of strategies have been proposed, including, assistive, challenge-based, haptic simulation, and coaching. The greatest amount of work has been done on developing assistive strategies, and thus the majority of this review summarizes techniques for implementing assistive strategies, including impedance-, counterbalance-, and EMG- based controllers, as well as adaptive controllers that modify control parameters based on ongoing participant performance. Clinical evidence regarding the relative effectiveness of different types of robotic therapy controllers is limited, but there is initial evidence that some control strategies are more effective than others. It is also now apparent there may be mechanisms by which some robotic control approaches might actually decrease the recovery possible with comparable, non-robotic forms of training. In future research, there is a need for head-to-head comparison of control algorithms in randomized, controlled clinical trials, and for improved models of human motor recovery to provide a more rational framework for designing robotic therapy control strategies

    A new fiber braided soft bending actuator for singer exoskeleton

    Get PDF
    This thesis presents a design, development and analysis of a novel bending-type pneumatic soft actuator as a drive source for a finger exoskeleton. Soft actuators are gaining momentum in robotic applications due to their simple structure, high compliance, high power-to-weight ratio and low production cost. Smaller and lighter soft actuator that can provide higher power transmission at lower operating air pressure will benefit finger actuation mechanism compared to motorized cable and pulley-driven finger rehabilitation devices. In this study, a soft actuator with new bending method is proposed. It is based on fibre reinforcement of two fibre braided angles of contraction and extension characteristics combined in a single-chamber cylindrical actuator. Another four design parameters identified that affect the bending motion and the actuating force were the air chamber diameter, position of fibre layer reinforcement, fibre reinforcement coverage angle, and silicone rubber materials. Geometrical and material parameters were varied in Finite Element Method (FEM) simulation for design optimization and some parameters were tested experimentally to validate the FEM models. The effects of fibre angles (contraction and extension) on the bending motion and force were analyzed. The optimized actuator can generate bending motion up to 131° bending angle and the end tip of the actuator can make contact with the other base tip at only 240 kPa given input pressure. Both displacement simulation and experimental testing results matched closely. Maximum bending force of 5.42 N was generated at 350 kPa. A wearable finger soft exoskeleton prototype with five optimized bending actuators was tested to drive finger flexion motion of eight healthy subjects with simulated paralysis conditions. The finger soft exoskeleton demonstrated the ability to provide gripping force of 3.61 ± 0.22 N, gained at 200 kPa given air pressure. The device can successfully provide assistance to weak fingers in gripping at least 240 g object. It shows potential in helping people with weakened finger muscle to be more independent in their finger rehabilitation exercise

    WiGlove : A Passive Dynamic Orthosis for Home-based Post-stroke Rehabilitation of Hand and Wrist

    Get PDF
    Stroke survivors often experience varying levels of motor function deficits in their hands affecting their ability to perform activities of daily life. Recovering their hand functions through neurorehabilitation is a significant step in their recovery towards independent living. Home-based rehabilitation using robotic devices allows stroke survivors to train at their convenience independent of factors such as the availability of therapists’ appointments and the need for frequent travel to outpatient clinics. While many robotic solutions have been proposed to address the above concerns, most focus on training only the wrist or the fingers, neglecting the synergy between the two. To address this, the WiGlove was co-designed to allow hemiparetic stroke survivors to train both the wrist and fingers in the comfort of their homes. The central hypothesis of this work is to investigate if a device designed using user-centred methods featuring aspects of usability such as easy donning and doffing and wireless operation, can act as a feasible tool for home-based rehabilitation of the hand and wrist following stroke. In order to aid this investigation, we tackled this task in three stages of usability and feasibility evaluations. Firstly, healthy participants tried the current state of the art, the SCRIPT Passive Orthosis, as well as the WiGlove, in a counterbalanced, within-subject experiment and attested to WiGlove’s improvement in several aspects of usability such as ease of don/doffing, suitability for ADL, unblocked natural degrees of freedom, safety and aesthetic appeal. Subsequently, a heuristic evaluation with six stroke therapists validated these improvements and helped identify issues they perceived to potentially affect the device’s acceptance. Integrating this feedback, the updated WiGlove was subjected to a six-week summative feasibility evaluation with two stroke survivors, with varying levels of impairment, in their homes without supervision from the therapists. Results from this study were overwhelmingly positive on the usability and acceptance of the WiGlove. Furthermore, in the case of the first participant who trained with it for a total of 39 hours, notable improvements were observed in the participant’s hand functions. It showed that even without a prescribed training protocol, both participants were willing to train regularly with the WiGlove and its games, sometimes several times a day. These results demonstrate that WiGlove can be a promising tool for home-based rehabilitation for stroke survivors and serve as evidence for a larger user study with more participants with varying levels of motor impairments due to stroke. The findings of this study also offer preliminary evidence supporting the effectiveness of training with the WiGlove, particularly in the case of the first participant, who exhibited a significant reduction of tone in the hand as a result of increased training intensity. Owing to the participant’s satisfaction with the device, it was requested by him to extend his involvement in the study by using the WiGlove for a longer duration which was facilitated

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device
    corecore